The Adaptive Lasso and Its Oracle Properties

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Adaptive Lasso and Its Oracle Properties

The lasso is a popular technique for simultaneous estimation and variable selection. Lasso variable selection has been shown to be consistent under certain conditions. In this work we derive a necessary condition for the lasso variable selection to be consistent. Consequently, there exist certain scenarios where the lasso is inconsistent for variable selection. We then propose a new version of ...

متن کامل

Self-adaptive Lasso and its Bayesian Estimation

In this paper, we proposed a self-adaptive lasso method for variable selection in regression problems. Unlike the popular lasso method, the proposed method introduces a specific tuning parameter for each regression coefficient. We modeled self-adaptive lasso in a Bayesian framework and developed an efficient Gibbs sampling algorithm to automatically select these tuning parameters and estimate t...

متن کامل

Sparsity oracle inequalities for the Lasso

This paper studies oracle properties of !1-penalized least squares in nonparametric regression setting with random design. We show that the penalized least squares estimator satisfies sparsity oracle inequalities, i.e., bounds in terms of the number of non-zero components of the oracle vector. The results are valid even when the dimension of the model is (much) larger than the sample size and t...

متن کامل

The Log-linear Group-Lasso Estimator and Its Asymptotic Properties

We define the group-lasso estimator for the natural parameters of the exponential families of distributions representing hierarchical log-linear models under multinomial sampling scheme. Such estimator arises as the solution of a convex penalized likelihood optimization problem based on the group-lasso penalty. We illustrate how it is possible to construct an estimator of the underlying log-lin...

متن کامل

Non-asymptotic Oracle Inequalities for the Lasso and Group Lasso in high dimensional logistic model

We consider the problem of estimating a function f0 in logistic regression model. We propose to estimate this function f0 by a sparse approximation build as a linear combination of elements of a given dictionary of p functions. This sparse approximation is selected by the Lasso or Group Lasso procedure. In this context, we state non asymptotic oracle inequalities for Lasso and Group Lasso under...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the American Statistical Association

سال: 2006

ISSN: 0162-1459,1537-274X

DOI: 10.1198/016214506000000735